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' NOTE
Direct Application of SHAKE to the Velocity Verlet Algorithm*

Since their introduction in 1977 {1], constraint algo-
rithms have been develeped lor many of the numerical
integration schemes used in molecular dynamics (MD)
simulations. Among these are SHAKE {1] and RATTLE
[ 2], which represent the use of constraints in the Verlet and
velocity Verlet algorithms, A number of other implementa-
tions for performing free energy calculations [3, 4] and for
studying conslant pressure-constant temperature MD [5]
have been devised.

The purpose of this note is to propose an alternative to
RATTLE for applying constraints to the velocity Verlet
algorithm. As described by Andersen [27, the RATTLE
algorithm requires two calculations of the constraint forees,
one for updating the positions and one Tor updating the
velocities. This is somewhat surprising given that SHAKE
contains only onc calculation of the constraint forces.
Because of the ease with which the velocity Verlet algorithm
can be converted to the standard Verlet algorithm, one
would intuitively expect that a constraint procedure could
be constructed for the velocity Verlet algorithm which
requires only one cvaluation of the constraint forces; this is
shown in the following.

Suppose the total forces, f,(7), and velocities, v,(r), acting
on the ith particle at time r are known. Both the force due
to the interatomic potentials, f{7), and the force due to the
constraints, g, (7}, are included in f,{r) so that

f{ny=1:(} +g:(0) (1)

The first two steps in the velocity Verlet algorithm counsists
of calculating the coordinates r; at time ¢+ d¢ and the
velocitics at time 7 + 1 J¢,

T+ Sy=r.{1)+drv (r}+

2
U0 @

2m,

1 t
, LY =y 2, 3
v,(f+251) "'("+2m,r'(”' {3)

* The U.S. Government's right to retain a nonexclusive royalty-free
license in and to the copyright covering this paper, for governmental
purposes, is acknowledged.

(021-999193 $5.00

Copyright ©) 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

470

The £,(r) already include the correct constraint (orces so
that the r,(r -+ §¢) satisly the constraints. These are usually -
of the form

d‘,?,,-fl';=0. (4}

The problem now arises when one tries to complete the final
step in the velocity Verlel algorithm and calculate v; (¢ + d¢)
via

1 i
v,.(r+(Sf):v,(r+—6;)+(—f,.(.r+61). (5)
2 2m,

The I;(1 + &¢) can be calculated since they only depend on
the atomic coordinates and the r (¢ + 1) are already known.
Computing the g, (¢ + dr) requires that the r,; (7 + 25r) satisfy
the constraint equations. This creates an apparent difficuity,
because tn order to calculate r;(f + 28¢) the v, {1+ d¢) are
needed; they in turn depend on f,(r +dr). Andersen’s
solution is to make use of the constraint equations

r;-v;=0, (6)

which can be obtained by differentiating Fq. {4) with
respect to time. Imposing the constraints from Eq. (6)
allows the calculation of the constraint forces g/, which in
turn allows the calculation of the velocites at {+ 1.
However, in the next step a new set of constraint forces, gF,
must be computed so that the r (¢ + 24¢) satisly the original
constraints from Eq. (4).

The main point of this paper is that it is possible
to calculate the constraint forces g {f-+ dr) directly. By
rewriting v,(r + a¢) using Eq. (5), the coordinates at time
{ + 26¢ can be writlen as

1
r4 200 =r(r+ o0+ dt v, (t +§¢31)

PO o+ P s )
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Note that most of the terms on the right-hand side of
Eq. (7) are known at time ¢-+4d¢. The r,(¢+467) and
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v;(¢ + 1 8t) have already been calculated. The f[(s + Jt) can
also be computed since they depend only on the r,{r + 41}
Define the quantities

i
ri(2+200)=71,(t + dt) + St v, (r +55t)

2
| (60

i
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then

r (14281 =r](

{1+ 51). (8)
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Equation (8) has exactly the same form as those
encountered in the SHAKE algorithm. After Eq. (8) has
been inserted into Eq. (4) the g,(r+6¢) can be found by
using an iterative scheme almost identical to SHAKE. This
algorithm is described briefly.

For a system that contains only bond length constraints
of the type in Eq. (4) the force acting on the ith atom can
be written as

g (1 dr)=} Agryu(t+ o1). 9)
k

The summation over k is over all atoms that are constrained
to atom 7 and r is the separation vector between the / and
the k atoms. The parameters 4, satisfy the relation 4, = 4;.
If there are L distinct constraints then there are L distinct
A8 and the problem is well posed.

Suppose a set of approximations to the 1, labeled 47,
exist. Approximate values for the constraint forces,
g(t + 3t), can be obtained from Eq. (9). Equation (2) can
then be used to obtain approximate values for the coor-
dinates, r{ (¢ + 26r), at time ¢ + 28¢. The 1} can be improved
by picking a particular pair, i, and writing

P (80)*
r.{1+28:)=r](t+261) +<5»1!,Tr,-j(r+ ot),
p (d1)*
r (7 +28r) =1/ (r+25t)— 34, g r;(t+41).

i

The quantity 34, is an estimate of the difference between 47
and the true J ., The contributions from all other constramt
forces not involving the ij pair are neglected. Using these
expressions in the constraint equation (4) and retaining
terms only to order O({ét)°) give

—|rg (4 280)
=2(5I)2(1 )5) T3t +281) 1,(1 4 51)
nmy, m;

+ O{(81)*). (10)
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This is solved for 54, and the result wsed to improve
{1+ 25t) and r/'(t+25:). The calculation is repeated for
another pair, jk, until the list of constraints is exhausted.
This procedure is iterated until all bonds satisfy the
constraint equations to some previously specified accuracy.

The only real difference between this algorithm and
SHAKE is that the definition of r;(¢ + 26¢) in Eq. (8) is dil-
ferent. It is also necessary to update the v, (1 + d¢) as the 84
are calculated. Because of the similarity between this algo-
rithm and SHAKE, it should have similar convergence and
stability properties. This algorithm has been implemented
on several rigid water models and gives constant energy
trajectories. ‘

For completeness it is shown that the errors in this
algorithm are of the same order as those in the original
velocity Verlet algorithm. Following Ryckaert er al. [1],
note that the exact constraint forces have the form

g (1+81)=Y Ault + 1) vyt +61).
k

If r;(¢ + 25¢) is expanded to all orders in d¢ about the point
r.(t+ &¢) then the @((51)*) and higher terms will contain
time derivatives of f] and g,. For the velocity Verlet algo-
rithm this expansion is truncated at ¢({87)%). Substituting
the Taylor expansion of r,(z+2dt) into the constraint
equations and retaining only terms of @({8¢)?) give
di—Ir;(1+25t)2= O{(80)*).
Replacing the A,{t+20r) by the A; means that the

constraint equations are satisfied exactly. This gives the
equations

dfj— iy (24 200))°

(3¢ ,
-2 Y Ault+60) vyt 4 01) - ri(e + 28r)
.

ik

(6:

Z Ayt +dey (e +de) -ry(e + 200}

J'

= 0{(91)%),
dy— vy (1 + 2680)|°

2
2 O s s rale+ 50y, (14 260)
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Z At +81) - x{t + 26t)

J’

=0((31)°).
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Subtracting these equations from each other results in

—2—%—2(/1(,\(&5:)

i

A ) Plt +0t) -xi (1 4 261)

5 L0t 1y

}:(Aj,r+51) Ap)Ey(1+81) -1yt + 251)

i

=0{(31)").
it follows that

Ay(t+8t)— A, = O(1).

These contribute errors of @((6¢)°) to the r;(z + 25t), which
is the same as the error inherent in the velocity Verlet
algorithm.
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